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Abstract

If the free liquid surface of a viscous liquid is completely covered by an elastic structure, the damped
natural frequencies of such a hydroelastic system are shifted to values larger than those obtained with a free
liquid surface. In addition, the sloshing of the liquid is considerably reduced and exhibits, depending on the
tension or stiffness of the covering elastic structure, smaller deflection amplitudes and drastically reduced
liquid forces and moments participating in the dynamic behavior of the system. The hydroelastic
frequencies of a viscous liquid in a circular cylindrical tank of moderate to large liquid height aspect ratio
may be covered completely by a flexible membrane or an elastic plate, and exhibit an increase with
increasing liquid height ratio h/a. In addition, the damping becomes stronger with the increasing h/a and
remains––as the frequency does—nearly constant from a certain height ratio onwards. This indicates that
from a certain moderate liquid height ratio neither frequency nor damping does change considerably, since
in the lower portion of the container the velocity distribution and its change remain quite small.

With the increase in the membrane tension parameter T� � Ta=rn2; the magnitude of both natural
frequency and the decay of the oscillations increase. The same happens for the increase of the stiffness
parameter D� � D=rn2a: In addition, higher modes show larger damping.
r 2004 Elsevier Ltd. All rights reserved.
see front matter r 2004 Elsevier Ltd. All rights reserved.
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Nomenclature

A, A0, D coefficients
An coefficients in Eqs. (13)–(15)
A�

n � Ana2=n
a radius of tank
D̄ flexural rigidity of the plate
E Young’s modulus of the plate
g gravitational acceleration
g� � ga3=n2

h liquid height
I0 modified Bessel function of order

zero
i imaginary unit
Jm Bessel function of the first kind of

order m

k constant in Eqs. (6)–(8)
K � ka

KnðSÞ roots of transcendental equation
(12)

K̄ distributed stiffness of plate
M number of division
Mr moment
P�

0 constant

p liquid pressure
p0 static liquid pressure
r, j, z coordinate system
S � sa2=n ¼ d� io�

s characteristic index
T tension of membrane
T� � Ta=rn2

t time
u, w velocity components of liquid
Vr shear force
b2

� a2ðms2 þ rgÞ=T ¼ ðm�S2 þ g�Þ=T�

d plate thickness
Z dynamic viscosity of liquid
m mass/unit area of membrane or

plate
m� � m=ra

n � Z=r
n̄ Poisson’s ratio of the plate
x; B displacement components of mem-

brane or plate
r density of liquid
o� ImðSÞ ¼ oa2=n
d ReðSÞ ¼ sa2=n
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1. Introduction

The trend for thin and light structures, predominant in modern technology, leads to high
flexibility of such systems. This is true for large-capacity liquid containers, such as propellant
storage tanks or containers in airplanes, missiles, space vehicles, satellites or space stations. There
are often strong interactions of propellants with the control system and the elastic structure,
which usually endangers the integrity of the system and finally, of course, the success of a mission.
Thus, the shifting of these—to instability leading—frequencies is usually the only way to remedy
such disturbing and dangerous problems. This may in some cases be achieved by covering the free
liquid surface with a flexible structural member, such as a membrane or a thin elastic plate of
various possible boundary conditions. In this way, a hydroelastic system as treated here is
showing frequencies away from the dangerous ones of the original system. It is, of course,
mandatory to know the magnitude of these hydroelastic frequencies and assure the designer that
they are located to a great extent above the control frequency. In recent years, some of the first
research activities in this hydroelastic area, where a lot of experiments and analyses [1–23] have
been performed for cylindrical tanks partially filled with frictionless liquid, emphasized the
importance of such hydroelastic investigations. Some of them treated the interaction and influence
of an elastic sidewall [2–5,9–15,17] with the free liquid surface behavior, while others [6–8]
investigated the effect of an elastic container bottom on the sloshing of non-viscous liquid with a
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free surface. Similar investigations have been performed for rectangular tanks with an elastic
liquid surface cover [24]. If the free liquid surface is completely covered by an elastic structure, the
natural frequencies of the liquid–structure system shall yield the required increase of the
frequencies [23], whose magnitude depends mainly on the tension or stiffness of the elastic
coverage. There are, however, also hydrodynamic systems for which the free liquid surface is only
partially covered with an elastic member. Results for the coupled frequencies of such systems are
presented for a cylinder [25] and for a rectangular container by Bauer and Eidel [26]. In all these
investigations, the liquid has been assumed to be incompressible and frictionless. Recently, the
coupled frequencies of the liquid in a circular cylindrical tank with an elastic cover and filled with
frictionless liquid has been determined by Bauer [23]. No results have been known for viscous
liquids until recently. For a cylindrical container covered by an elastic structure such as a
membrane or elastic thin plate and filled with viscous liquid, the coupled frequencies were
determined for small liquid height ratios h/a by Bauer and Chiba [27]. In this treatment, adhesive
conditions at the container bottom were satisfied, while at the small sidewall area only the normal
velocity condition has been observed. This seems to be justified for shallow containers. This
analytical treatment yields approximate complex frequencies, of which the real parts describe the
damping decay, while the imaginary parts represent the oscillation frequencies. The procedure is
based on the fact that in a container of small aspect ratio h=a; say at least h=ao1=2; the friction at
the sidewall can be neglected in comparison with that on the container’s bottom and top. This
assumption is based on the experimental and theoretical observation that the liquid motion takes
place in the upper portion, thus creating a large velocity at the bottom and top of the tank, which
represents an area of 2pa2; while the sidewall area is only 2pah: The smaller the value of h; the less
the damping created by the sidewall. It was found that viscosity decreases the oscillation
frequencies in comparison to the coupled hydroelastic frequencies of frictionless liquid and that a
new phenomenon appears exhibiting for certain small liquid height ranges h=a only aperiodic
motion. With increasing angular and radial mode numbers, these aperiodic ranges of h=a

decrease. In addition, it was found that higher modes show larger damping. An increase in the
membrane tension decreases the aperiodic region, while an increase in the mass of the membrane
increases it.

In what follows, an investigation is presented of the coupled frequencies of a hydroelastic
system consisting of a circular cylindrical tank filled with incompressible viscous liquid, the liquid
surface of which is covered by an elastic element, such as a flexible membrane or an elastic thin
plate with various boundary conditions. In this analysis, the liquid height ratio is considered large,
containing the complete region of liquid motion. The lower portion of the liquid does not
participate much in the motion of the liquid and behaves nearly as a rigid body. This indicates
that the velocity distribution at the bottom is quite small and exhibits only very small and
negligible values in the radial direction. It may therefore be considered to vanish in this
approximation theory. The large magnitude of the sidewall requires, however, to satisfy all
boundary conditions.

In the case where the surface is covered by an elastic plate, we may consider various boundary
conditions. First of all, the plate may be clamped, or it may be simply supported or guided
such that the rim of the plate may only be able to move up and down the wall of the
cylinder. Another case may be just the freely floating plate on the liquid surface. The case of
an elastically supported boundary, where the edge rotation would be opposed by spiral
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springs showing distributed stiffness (K̄ moment per unit length) and its longitudinal motion up
and down would be opposed by springs (k̄ distributed force per unit length), could also be
mentioned.

The case, treated here valid for large liquid height ratios h=a; will satisfy at the cylindrical wall
all adhesive conditions, while at the container bottom only the axial velocity conditions are
satisfied.
2. Basic equations and method of solution

A circular cylindrical container of radius a (Fig. 1) is filled to a height h4a with an
incompressible and viscous liquid of density r and kinematic viscosity n ¼ Z=r: The sidewall of the
tank r ¼ a and the bottom of the tank at z ¼ �h are considered rigid, while the free surface
at z ¼ 0 is totally covered with a flexible membrane or an elastic plate. The plate may
exhibit various attachments to the cylindrical wall. It may be clamped, simply supported, free,
guided or it may be elastically supported. Assuming small velocities and displacements,
the motion of the liquid–structure system satisfies for axisymmetric oscillations (@=@j � 0) the
Stokes equations

@u

@t
þ

1

r
@p

@r
¼ n

@2u

@r2
þ

1

r

@u

@r
�

u

r2
þ
@2u

@z2

� �
; (1)

@w

@t
þ

1

r
@p

@ z
¼ n

@2w

@r2
þ

1

r

@w

@r
þ

@2w

@z2

� �
� g (2)

and the continuity equation

@u

@r
þ

u

r
þ

@w

@ z
¼ 0: (3)

These equations have to be solved with the sidewall boundary condition

u ¼ w ¼ 0 at r ¼ a (4)

and the bottom boundary condition

u ¼ w ¼ 0 at z ¼ �h; (5)

of which u ¼ 0 has to be abandoned at z ¼ �h: This is justified for h4a since the motion of the
liquid is mainly present in the immediate vicinity of the elastic surface cover (near z ¼ 0). With
s ¼ sþ io

uðr; z; tÞ ¼ UðrÞ cosh½kðz þ hÞ
est; (6)

wðr; z; tÞ ¼ W ðrÞ sinh½kðz þ hÞ
est; (7)

p̄ðr; z; tÞ ¼ P̄ðrÞ cosh½kðz þ hÞ
est; (8)
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Fig. 1. Geometry and coordinate system.
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where the pressure distribution

pðr; z; tÞ ¼ p0 � rgz þ pðr; z; tÞ (9)

has been used. After the application of the vector operation ‘‘divergence’’ to the Stokes equations,
we obtain with the use of the above continuity equation div ~v ¼ 0 for the pressure, the Laplace
equation

Dp ¼ 0;

which renders the solution

P̄ ðrÞ ¼
Z
a

DJ0ðkrÞ: (10)

Introducing these results into the Stokes equations and the continuity equation, we obtain

d2U

dr2
þ

1

r

dU

dr
þ k2

�
1

r2
�

s

n

� �
U ¼ �

k

a
DJ1ðkrÞ;

d2W

dr2
þ

1

r

dW

dr
þ k2

�
s

n

h i
W ¼

k

a
DJ0ðkrÞ

and

dU

dr
þ

U

r
þ kW ¼ 0;

which exhibits the solutions (K � ka;S � sa2=n ¼ dþ io�)

UðrÞ ¼ AJ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2 � S

p r

a

� �
þ D

K

S
J1 K

r

a

� �
;

W ðrÞ ¼ �A

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2 � S

p

K
J0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2 � S

p r

a

� �
� D

K

S
J0 K

r

a

� �
:
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The side wall conditions (4) yield

D ¼ �A
SJ1ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2 � S

p
Þ

KJ1ðKÞ
(11)

and the transcendental equation for the determination of Kn(S):

KJ0ðKÞJ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2 � S

p� �
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2 � S

p
J1ðKÞJ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2 � S

p� �
¼ 0: (12)

With these results the velocity- and pressure distribution are given by

uðr; z; tÞ ¼
X1
n¼1

An J1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2

n � S

q
r

a

� �
�

J1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2

n � S

q
J1ðKnÞ

J1 Kn

r

a

� �8<
:

9=
; cosh Kn

ðz þ hÞ

a

� �
est; (13)

wðr; z; tÞ ¼ �
X1
n¼1

An

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2

n � S

q
Kn

J0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2

n � S

q
r

a

� �
�

J1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2

n � S

q� �
J1ðKnÞ

J0 Kn
r

a

� �
8>><
>>:

9>>=
>>; sinh Kn

ðz þ hÞ

a

� �
est

(14)

and

p̄ðr; z; tÞ ¼ �
Z
a

X1
n¼1

An

SJ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2

n � S

q� �
KnJ1ðKnÞ

J0 Kn

r

a

� �
cosh Kn

ðz þ hÞ

a

� �
est: (15)

If the liquid free surface at z ¼ 0 is covered by a flexible membrane, we have to solve the
membrane equation

T
@2B̄
@r2

þ
1

r

@B̄
@r

� �
¼ m

@2B̄
@t2

� p � 2Z
@w

@z

� �
z¼0

; (16)

while the boundary condition

B ¼ 0 at r ¼ a (17)

and the compatibility condition

@z̄
@t

¼ w at z ¼ 0: (18)

If the surface cover is described as an elastic plate, we have to employ the plate equation

D̄
@2

@r2
þ

1

r

@

@r

� �2

B̄þ m
@2B̄
@t2

¼ p � 2Z
@w

@z

� �
z¼0

; (19)
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which has to be solved [31] with either

ðaÞ clamped boundary : B ¼ 0 and
@B
@r

¼ 0 at r ¼ a; (20)

ðbÞ simply supported boundary : B ¼ 0 and Mr ¼ 0 at r ¼ a; (21)

ðcÞ free boundary : Mr ¼ 0 and Vr ¼ 0 at r ¼ a; (22)

ðdÞ guided boundary :
@B
@r

¼ 0 and Vr ¼ 0 at r ¼ a; (23)

ðeÞ elastically supported boundary : Mr ¼ K
@B
@r

and Vr ¼ �k̄z̄ at r ¼ a: (24)

In these equations, T is the membrane tension, m is the mass per unit area, Bðr; tÞ is the elastic
deflection in axial direction, while D̄ ¼ Ed̄

3
=12ð1� n̄2Þ is the flexural rigidity with d̄ as the

thickness of the plate, n̄ its Poisson’s ratio and E the modulus of elasticity. The values of Vr and
Mr are given by

Mr ¼ �D
@2z̄
@r2

þ
n̄
r

@z̄
@r

� �
and Vr ¼ �D

@

@r

@2z̄
@r2

þ
1

r

@z̄
@r

� �
:

The edge rotation in the boundary condition (e) is opposed by torsional springs having a
distributed stiffness K (moment per unit length), while the translation in the direction of z̄ is
opposed by spring having a distributed stiffness k̄ (force/unit length).

Actually, the displacement of the plate x̄ in radial direction is in comparison to that in axial
direction z̄ negligibly small. For this reason, the compatibility conditions are given by

u ¼ 0 and
@ z̄
@ t

¼ w at z ¼ 0; (25)

of which the first condition yields the expression

X1
n¼1

An J1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2

n � S

q
r

a

� �
�

J1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2

n � S

q� �
J1ðKnÞ

J1 Kn
r

a

� �
8>><
>>:

9>>=
>>; cosh Kn

h

a

� �
est ¼ 0: (26)

If the liquid surface at z ¼ 0 is totally covered by a flexible membrane, we obtain from the
compatibility condition with Eq. (14) and the deflection B of the membrane

zðr; tÞ ¼ z0ðrÞe
st ¼

X1
n¼1

zn1J0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2

n � S

q
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est; (27)
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The equation of the membrane is given by ðA�
n � Ana2=nÞ

d2z0
dr2

þ
1

r

dz0
dr

�
b2

a2
z0 ¼

Z
Ta
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r
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�
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J0 Kn
r

a
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h

a
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�

p0

T
;

ð29Þ

and exhibits the solution b2=a2 � ðms2 þ rgÞ=T ;T� � Ta=rn2
� �

z0ðrÞ ¼ A0I0 b r
a

� �
� 1

T�

P1
n¼1

A�
n

SJ1ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2

n � S

q
Þð1þ 2k2

n=SÞ

KnJ1ðKnÞ K2
n þ b2

� � cosh Kn
h

a

� �
J0 Kn

r

a

� �

þ 2
T�

P1
n¼1

A�
n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2

n � S

q
coshðKnh=aÞ

K2
n � S þ b2

� � J0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2

n � S

q
r

a

� �
þ P�

0:

(30)

The boundary condition (17) gives, i.e.

AoI0 bð Þ � 1
T�

P1
n¼1

A�
n

SJ1ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2

n � S

q
Þð1þ 2K2

n=SÞ

KnJ1ðKnÞ K2
n þ b2

� � coshðKn
h

a
ÞJ0 Knð Þ

þ 2
T�

P1
n¼1

A�
n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2

n � S

q
coshðKnh=aÞ

K2
n � S þ b2

� � J0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2

n � S

q� �
þ P�

0 ¼ 0:

(31)

Comparing the deflection B0ðrÞ; i.e. Eq. (30) with that obtained from the compatibility conditions
(27) and (28) yields

A0I0 b r
a

� �
þ

P1
n¼1

A�
n

2 coshðKnh=aÞ

T� K2
n � S þ b2

� �þ sinhðKnh=aÞ

SKn
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K2
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K2
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q
r
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n
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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q
Þ
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2K2
n þ S
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Þ
cosh Kn

h

a

� �
þ

Kn

S
sinh Kn

h

a

� �( )
J0 Kn

r

a

� �
þ P�

0 ¼ 0:

(32)

The Eqs. (26) and (32) represent two conditions as functions of the radial variable r/a and
Eq. (31) one condition at r ¼ a; and may be satisfied for a finite number of r=a ¼ l=M in the
range 0pr=ap1:
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We satisfy these equations at r=a ¼ l=M with l=0, 1, 2, y, (M�1), i.e. at a finite number of
points r/a. This yields for Eqs. (26), (31) and (32) the expressions

X2M�2

n¼1

A�
n J1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2

n � S

q l
M

� �
�
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l
M

� �8>><
>>:

9>>=
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h

a

� �
¼ 0 (26

0
)

for l ¼ 1; 2; . . . ; ðM � 1Þ:
It may be noticed that l ¼ 0 and l ¼ M are satisfied identically. These are (M�1) algebraic

equations in A�
n: Eq. (31) is a single equation, while Eq. (32) is represented as

AoI0 b
l

M

� �
þ

P2M�2

n¼1

A�
n

2 coshðKnh=aÞ

T� K2
n � S þ b2

� �þ sinhðKnh=aÞ

SKn

( ) ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2
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q
J0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2

n � S

q l
M

� �

�
P2M�2

n¼1

A�
n

J1ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2

n � S

q
Þ

KnJ1ðKnÞ

2K2
n þ S

T� K2
n þ b2

� � cosh Kn
h

a

� �
þ

Kn

S
sinh Kn

h

a

� �( )
J0 Kn

l
M

� �
þ P�

0 ¼ 0

(32
0
)

for l ¼ 0; 1; 2; . . . ;M :
These are M+1 algebraic equations in the constants A0; A�

n and P�
0: The Eqs. (26) and (32),

together with Eq. (31), are thus reduced to a homogeneous system of 2M algebraic equations. The
solution of these 2M equations requires the sum of the above series to run from n ¼ 1 to n ¼

2M � 2 to be able to describe the system of equations of 2M unknowns for A0; A�
n and P�

0

(n ¼ 1; 2; . . . ; 2M � 2).
The velocity distribution and pressure distribution may be obtained from Eqs. (13)–(15). From this,

we could easily obtain the liquid forces and liquid moments by integration over the container surfaces,
as has been performed in similar other cases [29]. Such computations have been omitted here.

They must be satisfied together with Eq. (12). The existence of a non-trivial solution requires
the determinant of the coefficients matrix to be zero. In the process of finding the zero
determinant, we can get parameters for a damping d and for frequency o� as complex values of
S ¼ sa2=n ¼ d� io�; which is contained in the matrix components. To find S which makes the
determinant zero, Ssol, we represent diagrams of real and imaginary parts of the determinant with
contour lines in a predicted S space where Ssol supposed to exist. From these two diagrams, we
can find a solution Ssol as a cross point of zero contour lines of the real and imaginary parts of the
determinant.

Plate cases may be treated in a similar way, but are omitted here.
3. Numerical evaluations and conclusions

Some of the above-obtained analytical results have been evaluated numerically and
are presented here. The numerical evaluations have been restricted to a membrane cover
(Fig. 1) in axisymmetric motion. In this case, vibration characteristics of the present viscous
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liquid–membrane coupled system are governed by the parameters: tension parameter T� �

Ta=rn2; gravitational parameter g� � ga3=n2; density ratio parameter m� � m=ra; liquid height
ratio h/a, and the vibration mode (m=0, n). In the numerical calculations, the number of
unknown parameters An was taken to be 20 to obtain reliable engineering data. It is to be noted
here that there are two kinds of roots Kn for transcendental equation (12), one is ReðKnÞ40 and
ImðKnÞ40 type, the other is ReðKnÞ40 and ImðKnÞo0 type, both of which have to be used. The
given results are especially of importance and of approximate validity for large liquid height ratios
h/a, for which the liquid in the lower part of the container behaves like a rigid body and its motion
takes place immediately below the membrane, penetrating the liquid only to a depth of about one
wavelength. Therefore, the contribution of the lower part of the liquid (near the bottom) to the
frequency and damping is of a minor and negligible effect.

In previous investigations [28,29] for a viscous liquid in a rigid container with a free liquid
surface, the results show the important fact that, for small liquid height h/a, the liquid motion
exhibits only an aperiodic motion, if disturbed. The decrease of the liquid surface tension
Fig. 2. Coupled complex frequencies for axisymmetric motion m ¼ 0 with liquid height h/a; T� ¼ 800; 1000; 2000,
g� ¼ 104 and m ¼ 10�2; viscous; 1 � h=a; - - - -, non viscous — �—, viscous [27] h=a � 1 (T� ¼ 1000).
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s� � sa=rn2 increases this aperiodic region and decreases the decay magnitude and oscillation
frequency for h/a values above the aperiodic range. In addition, the aperiodic region decreases
with increasing gravity parameter g� � ga3=n2; while in the oscillation region the decay magnitude
as well as the oscillation frequency increase. Higher modes have been shown to exhibit
significantly stronger damping.

If the free liquid surface is covered by a flexible membrane, we have found that the range of
aperiodicity is much larger than that for a liquid without such a cover. These results are presented
for small liquid height ratios h/ao1/2 in Ref. [27], where for m ¼ 0 the fictive liquid with
g� � ga3=n2 ¼ 104and T� ¼ 103 has been chosen.

In the present numerical evaluation, the tension parameter was chosen to be T� ¼ 800; 1000
and 2000, while the gravity parameter g� � ga3=n2 ¼ 104 and the density parameter m� ¼ 0:01: In
Fig. 2, we represent for these cases the coupled frequency o� � ImðSÞ and d � ReðSÞ both as
functions of the liquid height ratio h/a (h=ap2:0). In addition, the coupled frequency for
frictionless liquid is presented as a dashed line (– – –). The dash–dotted results (T� ¼ 1000) are
those in which only the normal boundary condition at the sidewall is satisfied and all adhesive
boundary conditions at the container bottom are observed [27]. This solution exhibits only, as
already mentioned above, a validity for small h=a values. We notice that with increasing liquid
height ratio h=a the coupled frequency increases, reaching soon, with increasing h/a, a magnitude
with very little change. The same is true for the decay magnitude d. With the increase of h=a the
damping becomes slightly stronger in the range of validity (hardly visible in the figure). The
increase in the tension parameter T� exhibits for the coupled frequency o� increased values, while
the decay magnitude d the results show also increased magnitude. This means that for increasing
membrane tension T� the damping of the liquid is stronger. In addition, we may note that for
lower T� the coupled frequency of frictionless liquid rapidly approaches the coupled frequency of
viscous liquid.

In comparison with the results of a viscous liquid with a free liquid surface in axisymmetric
motion [30], on the addition of an elastic membrane covering the total free surface area we find
increased damped oscillation frequency o� � ImðSÞ and a decay magnitude jdj � jReðSÞj; which is
considerably higher than that for the free liquid surface case. In addition, the increase of the
Fig. 3. Mode shape for g� ¼ 104; m� ¼ 10�2; (a) T� ¼ 800; 1000, 2000, h=a ¼ 0:5; (b) T� ¼ 1000; h=a ¼ 0:16; 0:5:
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damping with growing liquid height ratio h=a is much reduced. It exhibits in the here presented
range only a slight increase of jdj:

In Fig. 3, we observe the fundamental mode shape for T� ¼ 103; g� ¼ 104; m� ¼ 10�2 and a
liquid height ratio h=a ¼ 0:5 (a) and the effect of liquid height ratio h=a ¼ 0:16; 0:5 when T� ¼

1000 (b).
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